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One-Dimensional Classical Fluid with Nearest- 
Neighbor Interaction in Arbitrary External Field 

J. K. Percus I 

Received September 25, 1981 

We consider the equilibrium statistical mechanics of a classical one-dimensional 
simple fluid, with nearest-neighbor interactions, and in an arbitrary external 
potential. The external potential is eliminated to yield relations between the 
truncated partition functions and the one-body density. These relations are 
solved for pure cores and for sticky cores, resulting in each case in both an 
explicit potential density relation and grand potential density functional. Both 
models maintain finite-range direct correlations and have grand potentials 
expressible in terms of simple linear density transforms. 
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1. INTRODUCTION 

The microscopic structure of a classical fluid in thermal equilibrium has 
been investigated in ever-increasing detail. Qualitative characteristics of 
uniform system distribution functions are well understood, including those 
in the important critical region. The situation for nonuniform fluids is less 
clear, with a certain amount of controversy still present, (1) and even 
empirical methods for determining microscopic structure leave something 
to be desired. Under these circumstances, examination of model systems 
plays a useful role, allowing approximation methods to be evaluated, and 
suggesting others. The somewhat trivial simple (no internal degrees of 
freedom) one-dimensional fluid models thus become worth examining if 
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they can be fully and explicitly analyzed. The important characteristic, and 
the major source of difficulty, is that this must be done in the context of an 
arbitrary fluid density pattern, obtained by the imposition of an arbitrary 
external field. 

One such model, that in which the pair interaction potential is of pure 
hard core type, has previously been solved, (2) leading to a firmer apprecia- 
tion of the merits of typical approximation methods, and suggesting (3) 
fairly simple three-dimensional model free energies as well. In this paper, 
we will investigate the extended class of one-dimensional fluids in which 
the nearest-neighbor nature of the interaction is retained, without at first 
making any further assumptions as to its form. Nearest-neighbor interac- 
tion of course corresponds to a real pair potential when the latter consists 
of a hard core followed by a tail of range less than that of the core. The key 
to the solution lies in the evaluation of the external potential required to 
produce a given density pattern, rather than the more customary reverse 
problem. After setting up the formal solution in this fashion, we will apply 
it to two specific models and then comment on the suggested implications 
for the structure of real fluids. 

2. PARTITION FUNCTION FRAGMENTS 

We have in mind a one-dimensional fluid, on the full line - ~  < x 
< ~ ,  with fixed interparticle potential q~(r- r') but arbitrary external 
potential u(r). In this one-dimensional case, we can order N particles once 
and for all: x 1 <~ x 2 <<. x 3 . . .  <<. x u and compensate by including a permu- 
tation weight of N!. Here the order will be imposed by truncating the pair 
Boltzmann factor; we hence define 

e ( x , x ' )  = (e -~*(x-x ' ) ,  x > x'  (2.1) 
0, x ~< x '  

where fl = 1 / k T .  Assuming nearest-neighbor interaction, the (momentum- 
integrated) canonical partition function thus becomes 

N N N 

ON = f " " " f r I  e(xi,  x i - , )1 - I  W(xi )  I'I dxi (2.2) 
i=2  i=1 i=1 

where W ( x ) =  e -/~u(x). QN exists if W(x)-->O sufficiently rapidly as 
x --> + m. We will be mainly concerned with the grand canonical partition 
function 

~ ,  = k eNB"QN (2.3) 
N=O 

and its consequences. 
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In order to introduce the relevant distribution functions, we first define 
the left and right fragments 

N N N 

ON(X) . . .  f e (x ,  xN) II e ( x i ' X i - l )  I-[ W(Xi)  r [  dxi 
i = 2  i = 1  t = l  

N N N 

QN(x) = f  " " " ~ I'[ e(xi, xi-]) 1"I W(xi)e(xl,x) 1"I dxi (2.4) 
J i = 2  i=l i=l 

A 
Qo(x) = Oo(x)-- 1 

in terms of which the canonical one-body distribution is given by 
N 

nN(X) ON = W(x) ~ ON_)(x)Qj_,(x) (2.5) 
j= l  

Similarly, we define 

~-,(x) = ~ eNB"QN (X) 
o (2.6) 

.~.(x) = ~ eNCVON(X ) 
0 

in terms of which 

where 

A 
, ( x )  = w(x)Z(x)Z(x)/Z  

w(x)  = e~["-"(x)J 

(2.7) 

Here the chemical potential/~ is understood, but to avoid later confusion 
we have written Nr for the total grand partition formation. 

Formally, there is little difficulty in solving for ~ and ~. We note from 
(2.4) that 

(x) = f e (x, x') W(x') QN -, (x') QN dx' 
(2.8) 

A f QN(X) = e(x',x) W(x')QN_,(x')dx' 

Hence if the continuous matrix with elements e(x,x')is denoted by e, its 
adjoint by e*, W is taken as a diagonal matrix, and Q, Q as the correspond- 
ing (column) vectors, we have 

QN = eWQN- 1 
(2.9) 

w0 QN ~ e* N-1 
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From (2.6), then 

Y- = ewy- + 1 
= e*w~  + 1 

where 1 is the vector of all l's, with immediate solution 

Y- = ( I -  e w ) - l l  

= ( I -  e * w ) - l l  

The profile then follows from (2.7). 

(2.10) 

(2.11) 

3. SOLUTION OF THE INVERSE PROBLEM 

Equations (2.11) are not very helpful when explicit solutions are 
required for general w, and these indeed are not available in ordinary 
closed form. But implicit solutions are, in which w is expressed as a 
functional of the density. The strategy involves first eliminating w in favor 
of Y- and .~, obtaining these as functionals of the density, and then 
recovering w[n]. 

We start by eliminating w between (2.7) and each of (2.10). This yields, 
with argument suppression, 

. ( n ) -  ~,=e" -~ ~ r + l  
- ( 3 . 1 )  

= e * ( n ) - - + ,  

It is then convenient to assume (it will be true in our applications) that the 
inverses to e and e*, in the sense that e-~e = I, (e*)-le* -- I, satisfy 

el = e*l = 0 (3.2) 

Thus (3.1) becomes 

n~ ~- = e-IY-/Y-T,  n /y-  = e* -I~./Y- r (3.3) 

W e  then combine (3.3): n/Y ,  = e * - l [ n / ( e - l y - / y - r ) ] / y -  T, and similarly 
n/y-  = e - l [ n / ( e  * -  ly-/Y-r)]/Y- T, so that 

1 Y.(x) e* -  1 e -  1y-(x) 

l ^ - - e  - 1  

Z(x) e * - l ~ ( x )  

(3.4) 

our basic relation. 
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The elimination of 1 in (3.1) corresponds to the elimination of needed 
boundary conditions in (3.4). These can be recovered by returning to the 
original (2.10). We first recall for future use that 

= ~ ( -  Z ( ~ )  ~ )  = - r  "~ (3.5) 

On the other hand, from (2.10) it also follows that 

.~(-  ~ )  = . ~ ( c e )  = 1 ( 3 . 6 )  

This is not sufficient. But reinserting (3.6) in (2.11), using the one-sided 
property of e(x,x') and the conditions (3, 5), 

~(x) - 1---~en(x) as x---~ -oo  
(3.7) A ~(x)- 1-->e*n(x) as x --~ oe 

which will suffice for uniqueness. Of course, once ~ and ~ have been 
determined as functionals of the density, the inverse profile-potential 
relation is simply (2.7), written as 

w(x) n(x) = "~ ( 3 . 8 )  ^ ~T 
Finally, we can put (3.4) into a superficially more general but actually 

more useful form. For this purpose, we introduce modified partition func- 
tion fragments defined by 

" (3 9) .,~ = zA, = ~-*A 

for suitable operator ~-. Applying ~-* and ~- to (3.4), we then have 

[ n(x) J [ n(x) ] 
z* ~ =(e-'~-)* e_5-~(x) 

[ .(X)] --1[ n(x) 1 (3.10) 

~" ~-*A(x) =~'e (~.e_l),~(x) 

the desired form. The important asymptotic conditions (3.7) then transcribe 
to 

e-a~'A(x)--)n(x) as x--> - m  
(3.11) 

('re-l)*A(x)---~n(x) as x--~ ~ 

It may seem strange that it is necessary to introduce the right frag- 
ment, left fragment decomposition in order, e.g., to find "~r- Indeed, it is 
not, and the original derivation used a somewhat less transparent tech- 
nique (4) which avoided this decomposition. To gild a somewhat undis- 
tinguished lily, this derivation is presented in the Appendix. 
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. PURE HARD-CORE FLUID 

Our  first appl icat ion is to a previously solved problem.  (2) Consider  a 
hard-core  interact ion with core d iameter  a: 

1, x - x ' > a  
e(x ,x ' )= O, x - x ' < a  

Since e - l ( x ,  x ' )  = 8 ' (x  - x '  + a), then 

e-  if(x) = f ' ( x  + a) 

e*- l f (x )= - f ' ( x - a )  

Equat ions  (3.4) now become  

d n(x - a) 
n(x) = -~-(x) dx ~-'(x) 

,~ d n(x + a) 
n(x) = - , z (x )  dx .~'(x) 

The first of (4.3), writ ten as 

n ( x ) = n ( x - a ) - - ~ x  ~ n ( x - a )  

has the solution 

~ ( x )  
n ( x - a ) =  c l - s  

According  to (3.7), 

ln,~(x)--> fX -an (y )dy  or Z'(x)/~-(x)-~ n(x - a) 
, . , ' - - 0 0  

Hence  c 1 = 1 in (4.4), which integrates to 

x . ( z  - a )  
=j_~F' 1 - -rT-----n--Y=-a (y)dy dy l n ~ ( x )  

In  just  the same way, we find 

^ s n(z + a) 
l n Z ( x )  = _ 1 - f~+an(y)dy dy 

An immedia te  consequence of (4.5), or (4.6), is that  

,~ = e x p ~  ~ n(z + a) 
- r  .,_~, 1 + f~+"n(y)dy dz 

(4.1) 

(4.2) 

(4.3) 

(4.4) 

as x - +  - 

(4.5) 

(4.6) 

(4.7) 
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and a more detailed consequence, from (3.8), that 

f_~ n(z - a) f l (#  - u(x))  = Inn(x)  - ~ 1 - f~_an(y)dy  

f ) :  n (z + a) 
+ o~ 1 - f ~ + a n ( y ) d y  dz 

readily transformed to the local form 

fx n(z) 
+ 1 - )z tY) x - a  r z+an"  "d d.y 

Equations (4.5)-(4.9) reproduce those found previously. 

dz 

(4.8) 

(4.9) 

5. STICKY-CORE FLUID 

To impart some vestige of realism to the interaction q,, we must at least 
include an attractive component. We can imagine this as softening the edge 
of the core and introducing an additional attractive tail: 

e(x ,x ' )  = eo(X - x ' -  a) + A(x -- x ' - -  a) (5.1) 

where 

A(X) = e -pq'(x+a) -- eo(x ) 

Here e 0 is the Heaviside step function and A is of range less than a. 
Formally, we can then carry out a moment expansion of A: 

so that 

where 

A(x) = f S(x  -- y ) A ( y ) d y =  ~ ( -  1)S/s! B ( ' ) ( x ) f y s A ( y ) d y  
o 

e(x ,x ' )  = eo(x - x ' -  a) + ~ ysS(S)(x - x ' -  a) 
0 

v, = ( -  1 ) ' / s~fy ,~(y)dy .  

In operator form, this reads 

e = F(D )e0 

where 

F(D)  = 1 + ~ ro D,+ 1 
0 

D =-- ~/Ox 

(5.2) 

(5.3) 
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and similarly 

e* = r (  - D )e~ (5.4) 

A convenient choice of r in the context of (5.3) and (5.4) is simply 
r = F(D). Then e-1r = eo I = re -I on well-behaved functions, and (3.10) 
takes the form 

F( - D ) r ( D  )a (x )  dx '-~x) (5.5a) 

r(D) r ( -D)&x)  - Txx a'(x) 

where 

z = r ( D  )A, .~ = F ( -  D )~  (5.5c) 
A 

It is not strictly necessary to solve for both A and A, since it follows from 
definition, or from the equations (5.5) when each solution is unique, that 

a ( x  In (y) )  = A ( - x  I n ( - y ) )  (5.6) 

Consider then the first of (5.5). We can reduce the differential order by 1 
by constructing the familiar bilinear concomitant o) : 

A(x)F( - D ) [ n (x)/F(D )A(x) ] 

= F(D )A(x)[n(x)/r(D )A(x) ] 

- (D, + D2)[F(D,) - F ( -  D2)/D , - ( -  D2) ] 

x [ A(x) ][ n(x)/r(O )A(x) ] 
where D 1 operates on the first of the parenthesized factors, D 2 on the 
second, or 

[ n(x) ]=n(x )  d F(DI ) -F( -D2)  
A(x)r(- o ) r(O )A(x) ,ix D l + D 2 

• [6(x)][ .(x) 
r(D)A(x) ] 

Applying (5.7) to both sides of (5.5a) and integrating, then 

A(x) F ( D 1 ) - F ( - D 2 ) [ n ( x ) ]  
n(x - a) A'(x) - ~ - 7 9  2 [A(x)]  F (D)A(x)  

(5.7) 
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From (3.11), as x -~  - o o ,  e-lTA(x) = eo~A(x) = A'(x + a), and from 
(3.5), A ( x ) =  Z ( x ) -  ( [ F ( D ) -  1]/D)A'(x)--)1.  Hence e I = 1 in (5.8). 

Further reduction of (5.8) is not trivial, but it can be applied as it 
stands to the s = 0 version 

P(D)  = I + yD (5.9) 

corresponding to the "sticky-core" model introduced by Baxter (6) 

e(x ,x ' )  = e o ( x -  x ' -  a) + 7 6 ( x -  x ' -  a) (5.10) 

in which the interaction is compressed to a 0-range attractive tail 

q,A(x - x') = tim - [e0(x - x' - a) - eo(X - x' - a - 7t)]ln 1 + X 
X-+O 

(5.11) 
In this case, (5.8) specializes to 

A(x) , , ( x )a (x )  F x  

n ( x -  a) A'(x) Y A(x) + 7A'(x) = 1 - J x _ n ( y ) d y  (5.12) 

and the solution of the resulting quadratic equation that approaches zero as 
n ~ O  is 

A ' ( x ) / A ( x )  = K(x )  

1 1 + 7  
= 2T T-s + 1 - L_on(y)ay  

( - 1 + ~, - - - . - z - - - - - -  ( 5 . 1 3 )  
1 - f~_, ,n(y)dy 

We conclude that 
x 

A(x) = exp K(z)  dz 

and similarly, directly from (5.6) that 

A f x ~ R (  A(x) = exp z) dz 

where 

K(x) = 1 - ~ i - -  f-2+-~(yT~ + 

Jx tY) V 

(5.14) 

t/2 

4n(x  + a)y J 

(5.15) 
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with 

I((x - a ) -  K (x )=  n ( x ) -  n(x - a) 
1 - f~x-  a n ( Y )  dy 

Further .~(x) = (1 + ~D)A(x) = ^[1 + yA'(x)/A(x)]A(x) and ~(x) = 
(1 - ,/D)fi~(x) = [1 - vA'(x)/A(x)]A(x), so that 

~(x)  = [1 + 7K(x)]A(x) (5.16) 

~(x) = [l + v~(x)]~(x) 
To complete the description of the sticky-core model, it follows from 

either (5.14) or (5.15) that 

~ T  

n(x + a/2) + n ( x -  a/2) 
rn+a/2n~ 

1 - ) , _  a /2  ( Y )  dy 

+ 2(n x+aJ2 - aJ2 )211J2 ) 
-I --~'+~-~v~--dv - 1 dx (5.17) 

)n-a~2 I,.y) 

and then from (3.8) that 

fl(~- u(z))= Inn(z)- in[l + yK(z)] -ln[1 +/<(z)] 

+ ('/o~ [ / ( (x )  - K(x) ]  dx (5.18) 

Making use of 

1 
1 + vK(x)  

1 
A 

1 + 7K(x) 

(5.18) may be rewritten as 

A 

K(x-a) E fx 1 - ~(~) i- x-an(Y)dY 

- K(x + a) [ 1 -  f~ 

fl( # - u(z)) = ln[ K(z + a)I((z - a) ln(z)  l 

+ l l n ( 1 - f z z Z a n ( y ) d y ) ( l - f z z Z + a n ( y ) d y )  

l;:{[ n(x+a,+n(x  
+ ~ -a 1+ 2~ 1 -  f~+an(y) 

(5.19) 

(5.2o) 
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6. D I S C U S S I O N  

One of the primary purposes of the study of one-dimensional fluids is 
that of checking assumptions on the structure of fluids in which dimension- 
ality does not seem a crucial issue. In particular, hypothetical properties of 
the direct correlation function c(Q, r2) play an important role in a number 
of approximation methods that have been used: in py,(8), MSM,(9) for 
instance, c has the range of the interaction potential. Now c(Q,r2) is 
obtainable at once from the profile equation via 

$(r  I - r2) 3fl( I t -  u(r,)) 
n(r , )  c(r,,r2) = 8n(r2) (6.1) 

For example, for pure hard cores of diameter a, according to (4.9), 

e o ( x ,  + a - x 2 )  - e o ( x ,  - x 2 )  
e ( x l , x 2 )  = - 1 x , + o  - fx, n(y)dy 

e0(x 1 - x2) -- e0(x I - a -- x2) 

1 - fx~+On(y)dy 

[ eo(X, -  x2) - eo (x , -  ,, - x3)] 

f x E eo(~3 + a - ~ )  - eo(~ - x~)] 
- [ 1 - :x,(X3+an~v'~dY] n ( x 3 ) d x  3 (6 .2 )  

Thus, c(xp X2) = 0 unless Ix 1 -- x2] ~< a, in agreement with the above and in 
fact expressing their full content: 

e(x,,x2) = 0 for Ix, - x2] > a, 

g(xl ,x2)=O for Ix t - x 2 1 ~ < a  

uniquely determine g and e as functionals of the density n(x). (g is the 
two-point radial distribution.) 

For sticky hard cores, (5.20), the expression for c(xp x2) is a good deal 
more complicated. However, since u(z) depends upon n(y) only in the 
range z - a < y ~< z + a, it is still true that c(xl, x2) vanishes beyond the 
range of the core, g(x~, x2) within the range of the core. But g and c both 
have 6-function singularities at Ix I - x2[ = a, and these must be related to 
complete the determination of the structure. What is now no longer true is 
the validity of any of the usual closures, or auxiliary relations between g 
and c. To see this, it suffices to look at a uniform sticky hard rod fluid, 
where the relevant computations are trivial. In general, for nearest neighbor 
potential q ~ ( x - y )  and Boltzmann factor e(x)= e x p -  flep(x), it is easily 
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seen on working in an isobaric canonical ensemble that 

if O < x - y < 2 a ,  then n g ( x - y ) = e ( x - y ) e  a(~(e)-e(x-;))  

(6.3) 

where 

and also that 

e -#~(P) = fo~e(x)e- /3ex  dx 

( 1 -  e x p ( -  f l [ /x (e  + i k / f l ) - / ~ ( e ) ]  }) 
(1 -  exp(- . ( e -  - . ( e ) ] } )  

1 - ne(k)  = 1 - exp{ - / 3 [ / x ( e  + i k / f l )  - 2/x(e)  + / ~ ( e  - i k / f i ) ]  ) 

(6.4) 

Returning to the sticky hard rods with Boltzmann factor (5.10), the 
8-function singularities are then found to be 

7tiP 6 ( x - a ) +  . . .  
g (x )  - 1 + 7flP 

(6.5) 
v/~?(l + v/~e) 

c(~)-- l+2~/~e 8(~-~)+... 

The P Y  closure, for example, 

g ( x ) / e ( x )  = c ( x ) / [  e (x)  - 1 ] (6.6) 

would, in the singular region, require the two coefficients of ~(x - a) in 
(6.5) to be the same and this is in error by a term of relative order (TflP) 2 
for small y. 

A second, perhaps more important, motivation for one-dimensional 
studies is that of suggesting effective approximations for real fluids. A 
convenient quantity upon which to focus is the grand canonical potential 

f~ = - (1 / f l ) ln .~  (6.7) 

which serves as generating functional for all expectations. Equation (4.7), 
for example, has been used in this fashion. Since n (z + a) in the numerator 
of the integrand can be replaced by n(z)---the difference of the integrands 
is an obvious derivative--we can write (4.7) as 

a= _% f'~ l [n(z+_~)+n(za - ~ ) ] / ( 1  - Jz-a/2gz+a/2 " "dY) 

(6.8) 
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a functional of the surface and volume average densities 

n ~  = 

(6.9) 
1 fz+a/2 . . 

ndz)---  a Jz-a /2  n ( y ) d y  

This suggests that the grand potential of an arbitrary nonuniform fluid be 
modeled as 

f~[n] =fno(r)~(n,(r)ld3r (6.10) 

where n o and n~ are suitable linear transforms of the density, e.g., 

no(r ) = f o(r  + r ' )n(r ' )d3r  ' 

f o(r')d3r'= 1 (6.11) 

and ~0 is the specific grand potential or Pv product for the bulk fluid. 
The bulk Helmholtz free energy 

F n = F - f n ( r ) u ( r )  d3r 

= • + f , ( r ) [  , - u(r)]  d3r (6.12) 

is a more appropriate functional of the density. Since 

U = F s - f , ( r ) [  ~ - u(r)]  d3r 

we can, on separating out the ideal gas contribution, also write 

BFB[n] = f n(r)lnn(r)d3r+ f no(r)[ Bf(ndr))- lnndr)]d3r (6.14) 

The detailed fluid structure then follows from 

I~ - u ( r )  = ~FS[ n ] / d n ( r )  
(6.15) 

8(r - r') 
n(r)  c(r ,r ' )  = f16[ I~ - u ( r ) ] / 6 n ( r ' )  

Equation (6.14) is an outrageous extrapolation based upon minimal 
information. The unknowns o and ~ can, however, be determined from any 
two pieces of bulk information on c(r,r') ,  leading to quite reasonable 
results. (3) There are numerous generalizations that can be used to take 
advantage of additional bulk data, and these will be reported in due course. 



80 Percus 

But the sticky-rod result (5.17) serves to restrict the possibilities. It is again 
a functional of the average densities (6.9) relevant to the pure cores, but its 
form 

- 1---!--- 1 + 4 7 + 1 -y- "d-~(x)  - 1 dx f] = 2fly 1 - a G ( x  ) 72 

(6.16) 

is substantially different: there is no obvious specific free energy attached 
to it, and the "gradient" n~(x) also makes its appearance. 

In conclusion, we have seen that it is possible to analyze nontrivial 
nonuniform classical one-dimensional fluids, and that such analyses can 
contribute usefully to the study of the properties of real three-dimensional 
fluids. It is the properties peculiar to higher dimensionality that are given 
short shrift and that presumably will have to be treated by more specialized 
and incisive techniques. 

APPENDIX 

Here we define 

N N N 

f? ; QN(L)  =-=- " ' "  IX e(x,  - x ,_ , )  I I  W(x i )  H dxi (m,l) 
oo i = 2  / = 1  i = 1  

It follows that 

OO_~(L)/OL = W(L) f e(L - L') ~0_~-,(L')/8L'dL' 

o r  

from which 

m 

3QN(L)  
o ~  - W(L) f e'(L - L')G_,(L')  alL' (A.2) 

3~(z) 
OL - w(L) f e ' (L-  L')Z'-(L')aL' (A.3) 

Writing ~ = exp - fin, then 

f l ( u ( x )  - t*) = f l ~ ( x )  - ln~ ' (x)  + ln f e'(x - y ) e - ~ { Y )  dy (A.4) 

We now process (A.4) by first applying 8 /8~(z ) :  

3u(x)  3'(x - z) e ' (x  - z)e -a~{') 
/~ - B ~ ( x  - z )  /~ - -  ( A . 5 )  

8~(z)  gt'(x) f e ' (x  - y ) e  -e~(y~ dy 
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But n ( x ) =  l i m v ~ d ~ ( v ) / d u ( x ) .  Hence  multiplying (A.5) by n(x) and 
integrating over x, 

[ n ( z ) ] '  fifn(x)fe'(xe'(x-z)e-Z~(z)- _ - d x  (A.6) 0 = fin(z) + ~ Y) e-B~(y) ay 

If 

Ef(x) = j e , ( x  - y ) f ( y )  ay 

(A.6) can be rewritten as 

E * {  n(z)  n(z)  

which, with the identification N = EN,  E -- eO/Ox, is equivalent to the first 
of (3.4). 

R E F E R E N C E S  

1. R. Evans, Mot. Phys. 42:1169 (1981). 
2. J. K. Percus, J. Stat. Phys. 15:505 (1976). 
3. J. K. Percus, J. Chem. Phys. 75:1316 (1981). 
4. J. K. Percus, in Studies in Statistical Mechanics, E. W. Montroll and J. L. Lebowitz, eds. 

(North-Holland, Amsterdam, 1982). 
5. See, e.g., E. L. Ince, Ordinary Differential Equations, (Longmans, Green, London, 1926). 
6. R. J. Baxter, J. Chem. Phys. 49:2770 (1968). 
7. J. K. Percus and C. J. Yevick, Phys. Rev. 110:1 (1958). 
8. J. L. Lebowitz and J. K. Percus, Phys. Rev. 144:251 (1966). 


